

Synergistic effects using ozone, UV and advanced oxidation in multi barrier treatment processes for potable water and waste water reuse

Outline

- Introduction & Principals
- Pesticide Removal in WTP
- Seasonal Taste & Odor Treatment
- Indirect and Direct Potable Reuse
- Questions & Discussion

- UVC is light with a high energy
- Generated through mercury containing lamps (LP or MP) or LEDs
- Common wave length is 254 nm
- Photolysis is the main mechanism

- Strong oxidizing and disinfection agent
- Needs to be generated on site
- Selective reactions with organic matter

AOP

Oxidant	Oxidation Potential (V)	Oxidation Potential Rel. to Chlorine (V)
Hydroxyl Radical	2.80	2.05
Ozone	2.07	1.52
Hydrogen Peroxide	1.78	1.31
Potassium Permanganate	1.70	1.25
Sodium Hypochlorite	1.49	1.10
Chlorine	1.36	1.00
Chlorine Dioxide	1.27	0.93
Oxygen	1.23	0.90

OH Radicals

- React very fast with organic and inorganic compounds
- Lifetime is only nano seconds
- Any organic or inorganic compound will decrease the efficiency
- Compounds are usually <u>not</u> mineralized $\bigvee_{RO_2} \bigoplus_{RO_2} \bigoplus_{RO_2} \bigoplus_{RCHO} \bigoplus_{R$

Principals			АОР
UV H ₂ O ₂			
Start	:		
	$H_2O_2 + h\nu \rightarrow 2 HO$ •	Ф _{ОН} =1	(2-1)
Pron	notion:		
	$H_2O_2 + HO \bullet \rightarrow H_2O + HO_2 \bullet$		(2-2)
95.0 pm 147.5 pm	$HO_2 \bullet + H_2O_2 \rightarrow H_2O + \bullet O_2 \bullet + \bullet OH$		(2-3)
	$2 \text{ H}_2\text{O}_2 \rightarrow 2 \text{ H}_2\text{O} \textbf{+} \textbf{\bullet}\text{O}_2 \textbf{\bullet}$		(2-4)
^{94.0} H Term	ination:		
`` <u>`</u>	$HO\bullet + \bullet OH \to H_2O_2$		(2-5)
	$HO\bullet + HO_2\bullet \rightarrow H_2O + \bullet O_2\bullet$		(2-6)
	$HO_2 \bullet + \bullet O_2 H \rightarrow H_2O_2 + \bullet O_2 \bullet$		(2-7)

wedeco a xylem brand

- Uses GAC, Anthrazite, Sand or expended Clay
- Removes ammonia
- Removes TSS

- Reduces trace organic contaminants including NDMA
- Reduces oxidation by-products and lowers TOC

Synergistic Effects

Pesticide Removal - Metaldehyde

- Slug and Snail poison
- Metaldehyde is very persistant
- Passes ozone and GAC without significant removal

Pesticide Removal - Metaldehyde

- WTP in the UK
- Flow rate 800 m³/h (5 MGD)
- Elevated Metaldehyde levels in the reservoir with seasonal peaks (6 month 0.5 LOG and 3 month 1.0 LOG removal)
- Elevated Bromide levels 70-90 µg/L
- 6 month pilot study to evaluate:
 - UV LP AOP
 - Ozone AOP
 - Ozone AOP+ UV LP AOP

Wedeco Pro₃mix

Wedeco LBX 10

Technology	LOG	Costs kUSD / 10 y
Ozone AOP	0.5	4.370
UV AOP (LP)	0.5	5.820
UV AOP (LP)	1.0	8.340
Ozone AOP + UV AOP	1.0	7.730

- WTP in the Netherlands
- Flow rate 12,000 m³/h

- Micro pollutants in the raw water source (Meuse River)
- Elevated Bromide levels 90-170 µg/L
- Very strict Bromate limits (<0.5 µg/L)

Source: Ton Knol , DUNEA - IOA Berlin 2017

- 8 year research project to evaluate:
 - > UV LP AOP
 - > UV MP AOP
 - Ozone AOP
 - > Ozone + UV LP AOP

Source: Ton Knol et al.

Source: Ton Knol et al.

Average conversion of compounds by H2O2 /O3 / UV from 17-08-2011 until 15-02-2012

Source: Ton Knol et al.

Benefits serial AOP

- 3 oxidation mechanisms
- Increase UVT by oxidation DOC
- Energy efficient
- Smaller footprint
- Target: 80% conversion of MC at energy consumption of 0.15 kWh/m³

Source: Ton Knol et al. IOA Berlin 2017

Source: Ton Knol et al. IOA Berlin 2017

Pesticide Removal Summary

- Ozone improves the UVT and lowers scavenging potential
- Ozone AOP has the lowest OPEX
- When Bromate formation is a concern AOPs can be combined
- Combined AOP's can provide lower treatment costs than single UV based AOPs
- Combined treatment steps provide a multiple barrier against a wider range of pollutants and pathogens
- If an upstream ozone treatment is reasonable must be evaluated considering CAPEX and OPEX

What is T&O?

- Two major compounds are responsible for T&O
- Methylisoborneol & Geosmin
- MIB & Geosmin are formed by cyano bacteria during the bloom
- Bloom event is typically seasonal (2-3 month per year)
- Traces (ng/L) of MIB & Geosmin are recognized by humans
- Easy break trough when using GAC
- PAC needs up to 50 ppm for 20 minutes RT

Ozone / Ozone AOP for T&O

Ozone & Ozone AOP – 2-MIB

Ozone & Ozone AOP – Geosmin

Ozone & Ozone AOP

UV AOP for T&O

UV AOP for T&O

46

Multibarrier for trace organic removal (ng/L)

2-MIB in Oxidation outlet

2-MIB in Oxidation inlet

2-MIB in Oxelia outlet

300,0 81,0 16,2 0xelia 1: O3 + BAF 0xelia 2: AOP + BAF

Treated Water Biostability by Oxelia (µg/L)

Depth of media (cm)

Technologies - Selection

- How long is the T&O event
- Flow rate
- Water quality (UVT, TOC, Alkalinity, etc.)
- Existing infrastructure / Available footprint
- Price for oxygen, peroxide, etc.
- Other treatment challenges

. . . .

Technologies – Selection: UV LP vs. MP

	low pressure system	medium pressure system	
Flow rate	4419 m³/h	4419 m³/h	
Number of reactors	3	3	
Quantity of lamps	504	48	
Lifetime of lamps	14,000 h	14,000 h 9,000 h	
Quantity of ballasts	252	48	
Average power consumption (AOP mode)	148 kWh (33.5 W/m³)	296 kWh (67 W/m³)	
H ₂ O ₂ Dose	10 mg/L	10 mg/L	
AOP mode operation	1560 h/a	1560 h/a	
Average power consumption (Disinfection mode)	15 kWh	65 kWh	
Disinfection mode operation	7200 h/a	7200 h/a	
Price 1 kWh	0,08 \$	0,08 \$	
Annual ballast failure rate	2 %	3 %	
Years of operation	15	15	
Interest rate	3%	3%	

Technologies – Selection UV LP vs. MP

Technologies – Selection UV LP vs. MP

Days of AOP operation	Savings LP vs. MP		
30	38,000 USD		
60	44,000 USD		
90	50,000 USD		
120	56,000 USD		
360	105,000 USD		

Technologies – Selection UV LP vs. MP

- UV LP has become more popular due to higher rated lamps (> 0.5 kW / lamp) → CAPEX savings
- Year around disinfection requirements favor UV LP due to lower energy costs → OPEX savings

Siheung DWTP AOP Project

- UVT : 92.7% ~ 97.3% (Avg. 95.7%)
- Flow : 106,050 $m^3/d = 4,419 m^3/h$

Treatment Goal

0.5 LOG Removal of 2-MIB

\rightarrow 60 days/y

3.0 LOG Removal of Cryptosporidium

\rightarrow 365 days/y

Pilot tests – LP Reactor

- Type : WEDECO LBX 120
- Flow Rate : 1,000 m³/d
- Lamps : 6 Lamp á 360 W incl. Ballasts = 2,16 kW

Pilot tests – MP Reactor

Flow Rate : 2,000 m³/d

Lamps : 4 Lamp á 3000 W incl. Ballasts = 12 kW

Pilot tests – Summary

Low pressure reactor		Medium pressure reactor			
EED	H_2O_2 dose	LOG	EED	H_2O_2 dose	LOG
[kW/m³]	[mg/L]	reduction	[kW/m³]	[mg/L]	reduction
0.07	5	0.58	0.190	5	0.50
0.07	10	0.87	0.144	10	0.53

→ LP UV AOP needs more than 50% less energy

Siheung DWTP AOP Project

- Surface Water Treatment
- Flow rate 4419 m³/h
- 60 days T&O removal
- 365 days 3 LOG Crypto
- UVT 93%

- Classic ozone contactor for year round disinfection, color removal, NOM oxidation and seasonal T&O removal by peroxide dosing
- BAF for peroxide quenching and further NOM / AOC removal

- Ozone AOP Reactor for seasonal T&O removal
- BAF for peroxide quenching and further NOM / AOC removal
- UV system for year round disinfection

- UV AOP system for seasonal T&O removal and year round disinfection
- BAF for peroxide quenching and further NOM / AOC removal

Technology evaluation – 60 days AOP mode

T&O Summary

- LP UV AOP can be an attractive option for seasonal T&O treatment
- LP UV AOP provides significantly lower energy costs compared to UV MP
- Ozone AOP usually provides the lowest OPEX
- Combination with BAF provides a stronger barrier and cost savings for residual peroxide quenching
- Decision which technology is most economical has to be evaluated in each case
- Additional treatment challenges or benefits of certain technology need to be considered

Benefits:

- Relieves Water Stress
- Cost-Effective
- Drought-Resistant
- Urbanization means Point of Waste = Point of Use

Challenges:

- Trace Organic Contaminants (TOrCs)
- Pathogens
- Public Perception "The Acceptance Factor"
- Lack of Regulations

- The use of Ozone for reuse is primarily driven by the need to:
 - Remove emerging contaminants due to both public perception and regulatory uncertainty along with known adverse environmental impacts
 - Improve aesthetic impacts of reclaimed water such as color and odor that readily important to customers
 - Enhance multiple-barrier treatment train approaches for indirect and direct potable reuse
 - Address challenges posed by use of membranes such a brine residual management and membrane fouling

Ozone-Oxidation

- Disinfects (i.e. virus inactivation)
- Removes color and odor
- Reduces trace organic contaminants
- Increases biodegradability of recalcitrant organic carbon
- Supersaturates water with dissolved oxygen

Ozone-BAF

"Free" biology

.

•

- <u>Destroys</u> recalcitrant organic carbon
- Generates biologically stable effluent
- Eliminates toxicity
- Increases UVT
 - Provides multiple-barrier

BAF

- Removes ammonia
- Removes TSS
- Reduces trace organic contaminants including NDMA
- Reduces oxidation byproducts

1 Inactivation of Pathogens & Oxidation of Organics **2** Removal of TSS and Turbidity **3** Destruction/Removal of TOC, CECs, and DBPs

Comparison of O3-BAF to RO for Indirect Potable Reuse

	MF-Ozone-BAF	MF-RO-AOP
Installed capital cost	~ 40% lower	High
Annual operation and maintenance cost	~ 50% lower	High
Energy	Low	High
Consumables	Low (GAC does not need to be replaced)	No (RO membranes must be replaced)
Residual Management	Minimal	Yes
TDS/Salinity Removal	No (use partial RO treatment if needed)	Yes
Destroys TOrCs and TOC	Yes	No (creates a residual waste stream)

Water Reuse – OXELIA Pilots (WWTP Zelienople)

Flowrate	5 – 25 GPM
Ozone Generation System	PSA O2 on-site concentrator + WEDECO GSO system
Ozone Dose	0 or 2 -25 ppm
Ozone Contact tank	2 × 300 gallon
Filter Size	2'(L)× 2'(W)× 17'(H) (Full size filter)
Filter Media	6' of Spent GAC (ES 0.95mm, UC 1.7) 6' of Anthracite (ES 0.95mm, UC 1.7)

Water Reuse – OXELIA Pilots (WWTP Zelienople)

Water Reuse – OXELIA Pilots (WWTP Zelienople)

	Secondary Treated Efflluent	Ozonated water/ Filter inlet	Filter Outlet
COD	21 – 33 mg/L	Not Measured	10 - 20 mg/L
TOC	4.8 – 7.0 mg/L	Not Measured	3.0 - 5.5 mg/L
UVT	58% – 72%	65% - 82%	70% - 89%
Turbidity	7 – 10 NTU	Not Measured	0.2 – 3.0 NTU
TSS	Not Measured	5 – 10 mg/L	0.2 – 2.4 mg/L
TKN	2.8 mg/L	2.1 mg/L	1.4 mg/L

Water Reuse – San Diego Pure

- $O_3 + BAF + MF + RO + UVAOP$
- 165 m³/h
- Ozone capacity of 4 kg/h
- 15 min EBCT Gravity GAC Filters
- Base of design for a 5677 m³/h Reuse plant

Water Reuse – San Diego Pure

Key Observations

- ~40% TOC removal across O3-BAC system
- Ozone excellent at removing a majority of CECs
- BAC (after ozone) provides additional barrier for most challenging CECs and oxidation byproducts
- O3-BAC significantly reduces organic fouling of UF membranes
- O3-BAC improves quality of RO concentrate
- O3-BAC satisfied California criteria for AOP

Water Reuse – WRRF 11-02

- Utilize exhausted GAC for study to eliminate adsorption impacts
- Increased UV Transmittance from ~76% to ~89%

Water Reuse – WRRF 11-02

Ref: Trussell Technologies IOA-PAG Dallas 2015

Water Reuse – DCTWRP AWPF Pilot Project

Limited side stream treatment from RO evaluated for the scenario where it is deemed necessary for meeting TDS or chloride limits:

Water Reuse – DCTWRP AWPF Pilot Project

Water Reuse – DCTWRP AWPF Pilot Project

Water Reuse - Summary

- TOC removal across O3-BAF System approached steady-state after 4-6 weeks of operation
 - Measured true acclimatization of biology by beginning pilot with "exhausted" GAC
- The UV Transmittance of the water increased from ~76% to ~89% across the O3-BAF System
 - Surrogate for TOC removal, overall performance
 - Significantly reduces size of downstream UV System
- NDMA formed by Ozone is removed by BAF
 - Ozone formation of NDMA will vary from site to site
 - Changes in EBCT appear to impact NDMA removal
 - Conceptual treatment train accounts for potential NDMA issues by using UV as final polish
- Achieving 3-4 day run times in between backwashes, but could be longer if triggered by head loss
- Ozone and O3-BAF significantly reduce organic fouling of membranes
- Ozone-Enhanced Biologically Active Filtration enables the implementation of costeffective alternatives to RO-based treatment trains

Thank You!

